Search results
Results from the WOW.Com Content Network
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) [note 1] is a 64-bit version of the x86 instruction set, first announced in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.
The term 64-bit also describes a generation of computers in which 64-bit processors are the norm. 64 bits is a word size that defines certain classes of computer architecture, buses, memory, and CPUs and, by extension, the software that runs on them. 64-bit CPUs have been used in supercomputers since the 1970s (Cray-1, 1975) and in reduced ...
IA-64 (Intel Itanium architecture) is the instruction set architecture (ISA) of the discontinued Itanium family of 64-bit Intel microprocessors. The basic ISA specification originated at Hewlett-Packard (HP), and was subsequently implemented by Intel in collaboration with HP. The first Itanium processor, codenamed Merced, was released in 2001.
On the x86-64 platform, a total of seven memory models exist, [7] as the majority of symbol references are only 32 bits wide, and if the addresses are known at link time (as opposed to position-independent code). This does not affect the pointers used, which are always flat 64-bit pointers, but only how values that have to be accessed via ...
An instruction set architecture (ISA) is an abstract model of a computer, also referred to as computer architecture.A realization of an ISA is called an implementation.An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost (among other things); because the ISA serves as the interface between software and hardware.
The x86-64 architecture does not use segmentation in long mode (64-bit mode). Four of the segment registers, CS, SS, DS, and ES, are forced to base address 0, and the limit to 2 64. The segment registers FS and GS can still have a nonzero base address. This allows operating systems to use these segments for special purposes.
Newer x86 CPUs support a more advanced technique called page attribute tables (PATs) that allow for per-page setting of these modes, instead of having a limited number of low-granularity registers to deal with modern memory sizes that can be as high as 64 GB even on a laptop, and several times that amount on a desktop system.
Examples include the Intel 8080, Intel 8085, Zilog Z80, Motorola 6800, Microchip PIC18, and many others. These processors have 8-bit CPUs with 8-bit data and 16-bit addressing. The memory on these CPUs is addressable at the byte level. This leads to a memory addressable limit of 2 16 × 1 byte = 65,536 bytes or 64 kilobytes.