Search results
Results from the WOW.Com Content Network
A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
The magnetosphere is defined by the extent of Earth's magnetic field in space or geospace. It extends above the ionosphere , several tens of thousands of kilometres into space , protecting Earth from the charged particles of the solar wind and cosmic rays that would otherwise strip away the upper atmosphere, including the ozone layer that ...
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
If the magnetic field does grow, then the system is either capable of dynamo action or is a dynamo, but if the magnetic field does not grow, then it is simply referred to as “not a dynamo”. An analogous method called the membrane paradigm is a way of looking at black holes that allows for the material near their surfaces to be expressed in ...
The interaction between solar wind and geomagnetic field eventually combine to result in the formation of an electrical current layer, which is called the magnetopause. This electric current layer confines the Earth's magnetic field. The region in which the magnetopause is enclosed in is known as the magnetosphere. [7]
The plasma sheet in Saturn's magnetosphere has a bowl-like shape not found in any other known magnetosphere. When Cassini arrived in 2004, there was a winter in the northern hemisphere. The measurements of the magnetic field and plasma density revealed that the plasma sheet was warped and lay to the north of the equatorial plane, looking like a ...
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
Although Mercury's magnetic field is much weaker than Earth's magnetic field, it is still strong enough to deflect the solar wind, inducing a magnetosphere. Because Mercury's magnetic field is weak while the interplanetary magnetic field it interacts with in its orbit is relatively strong, the solar wind dynamic pressure at Mercury's orbit is ...