Search results
Results from the WOW.Com Content Network
BMR is a flexible trait (it can be reversibly adjusted within individuals), with, for example, lower temperatures generally resulting in higher basal metabolic rates for both birds [7] and rodents. [8] There are two models to explain how BMR changes in response to temperature: the variable maximum model (VMM) and variable fraction model (VFM).
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observations that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
Furthermore, a number of species with high metabolic rate, like bats and birds, are long-lived. [10] [11] In a 2007 analysis it was shown that, when modern statistical methods for correcting for the effects of body size and phylogeny are employed, metabolic rate does not correlate with longevity in mammals or birds. [12]
RMR differs from basal metabolic rate (BMR) because BMR measurements must meet total physiological equilibrium whereas RMR conditions of measurement can be altered and defined by the contextual limitations. Therefore, BMR is measured in the elusive "perfect" steady state, whereas RMR measurement is more accessible and thus, represents most, if ...
In plotting an animal's basal metabolic rate (BMR) against the animal's own body mass, a logarithmic straight line is obtained, indicating a power-law dependence. Overall metabolic rate in animals is generally accepted to show negative allometry, scaling to mass to a power of ≈ 0.75, known as Kleiber's law, 1932. This means that larger-bodied ...