Search results
Results from the WOW.Com Content Network
Kleiber's plot comparing body size to metabolic rate for a variety of species. [1]Kleiber's law, named after Max Kleiber for his biology work in the early 1930s, states, after many observations that, for a vast number of animals, an animal's Basal Metabolic Rate scales to the 3 ⁄ 4 power of the animal's mass.
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. [1] It is reported in energy units per unit time ranging from watt (joule/second) to ml O 2 /min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...
Kleiber found that an organism's basal metabolic rate could be predicted by taking 3/4 the power of the organism's body weight. This finding was noteworthy because the inversion of the scaling exponent, between 0.2 and 0.33, also demonstrated the scaling for both lifespan and metabolic rate, and was colloquially called the "mouse-to-elephant ...
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
The Institute of Medicine equation uses a different approach to most others. The equation doesn't measure basal metabolic rate, but uses experiments based on doubly labelled water. The scientists at the Institute of Medicine said in their report that the factorial method tended to underestimate calorie expenditure.
A child aged 1–3 years old can have a heart rate of 80–130 bpm, a child aged 3–5 years old a heart rate of 80–120 bpm, an older child (age of 6–10) a heart rate of 70–110 bpm, and an adolescent (age 11–14) a heart rate of 60–105 bpm. [12] An adult (age 15+) can have a heart rate of 60–100 bpm. [12]
In order to cope with an unpredictable climate, burrowing parrots increase their body mass and decrease their basal metabolic rate (BMR) in the winter in order to conserve energy, insulate against cold ambient temperatures and to survive reductions in food availability, in concurrence with other birds found in the southern hemisphere. [19]