Search results
Results from the WOW.Com Content Network
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...
For example, the zero dipole of CO 2 implies that the two C=O bond dipole moments cancel so that the molecule must be linear. For H 2 O the O−H bond moments do not cancel because the molecule is bent. For ozone (O 3) which is also a bent molecule, the bond dipole moments are not zero even though the O−O bonds are between similar atoms. This ...
As such, the SI unit of magnetic dipole moment is ampere meter 2. More precisely, to account for solenoids with many turns the unit of magnetic dipole moment is ampere–turn meter 2. In the magnetic pole model, the magnetic dipole moment is due to two equal and opposite magnetic charges that are separated by a distance, d.
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
Moreover, one form of magnetic dipole moment is associated with a fundamental quantum property—the spin of elementary particles. Because magnetic monopoles do not exist, the magnetic field at a large distance from any static magnetic source looks like the field of a dipole with the same dipole moment. For higher-order sources (e.g ...
Magnetic moment, magnetic dipole moment: m, μ B, Π: Two definitions are possible: using pole strengths, = using currents: = ^ a = pole separation N is the number of turns of conductor A m 2 [I][L] 2: Magnetization: M
However, with ferromagnets = [(+)] / (= 2.0023 ≈ 2) tends to overestimate the total spin-only magnetic moment per atom. For example, a net magnetic moment of 0.54 μ B per atom for Nickel metal is predicted by the Stoner model, which is very close to the 0.61 Bohr magnetons calculated based on the metal's observed saturation magnetic ...
Magnetic dipole transitions describe the dominant effect of the coupling of the magnetic dipole moment of the electron to the magnetic part of the electromagnetic wave. They can be divided into two groups by the frequency at which they are observed: optical magnetic dipole transitions can occur at frequencies in the infrared, optical or ...