Search results
Results from the WOW.Com Content Network
An integer relation algorithm is an algorithm for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them, or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain upper bound .
Since f is of degree d with integer coefficients, if a and b are integers, then so will be b d ·f(a/b), which we call r. Similarly, s = b e ·g(a/b) is an integer. The goal is to find integer values of a and b that simultaneously make r and s smooth relative to the chosen basis of primes.
No efficient integer factorization algorithm is known, and this fact forms the basis of several modern cryptographic systems, such as the RSA algorithm. The integer factorization problem is in NP and in co-NP (and even in UP and co-UP [23]). If the problem is NP-complete, the polynomial time hierarchy will collapse to its first level (i.e., NP ...
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Computational geometry applies computer algorithms to representations of geometrical objects. Theoretical computer science includes areas of discrete mathematics relevant to computing. It draws heavily on graph theory and mathematical logic. Included within theoretical computer science is the study of algorithms and data structures.
In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of computational methods for investigating and solving problems in number theory and arithmetic geometry, including algorithms for primality testing and integer factorization, finding solutions to diophantine equations, and explicit methods in arithmetic geometry. [1]
When a positive integer m is chosen so that (a + bm)/k is an integer, so are the other two numbers in the triple. Among such m, the method chooses one that minimizes the absolute value of m 2 − N and hence that of (m 2 − N)/k. Then the substitution relations are applied for m equal to the chosen value.
These algorithms can also be used for mixed integer linear programs (MILP) - programs in which some variables are integer and some variables are real. [23] The original algorithm of Lenstra [ 14 ] : Sec.5 has run-time 2 O ( n 3 ) ⋅ p o l y ( d , L ) {\displaystyle 2^{O(n^{3})}\cdot poly(d,L)} , where n is the number of integer variables, d is ...