enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer relation algorithm - Wikipedia

    en.wikipedia.org/wiki/Integer_relation_algorithm

    An integer relation algorithm is an algorithm for finding integer relations. Specifically, given a set of real numbers known to a given precision, an integer relation algorithm will either find an integer relation between them, or will determine that no integer relation exists with coefficients whose magnitudes are less than a certain upper bound .

  3. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    Since f is of degree d with integer coefficients, if a and b are integers, then so will be b d ·f(a/b), which we call r. Similarly, s = b e ·g(a/b) is an integer. The goal is to find integer values of a and b that simultaneously make r and s smooth relative to the chosen basis of primes.

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    No efficient integer factorization algorithm is known, and this fact forms the basis of several modern cryptographic systems, such as the RSA algorithm. The integer factorization problem is in NP and in co-NP (and even in UP and co-UP [23]). If the problem is NP-complete, the polynomial time hierarchy will collapse to its first level (i.e., NP ...

  5. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  6. Discrete mathematics - Wikipedia

    en.wikipedia.org/wiki/Discrete_mathematics

    Computational geometry applies computer algorithms to representations of geometrical objects. Theoretical computer science includes areas of discrete mathematics relevant to computing. It draws heavily on graph theory and mathematical logic. Included within theoretical computer science is the study of algorithms and data structures.

  7. Computational number theory - Wikipedia

    en.wikipedia.org/wiki/Computational_number_theory

    In mathematics and computer science, computational number theory, also known as algorithmic number theory, is the study of computational methods for investigating and solving problems in number theory and arithmetic geometry, including algorithms for primality testing and integer factorization, finding solutions to diophantine equations, and explicit methods in arithmetic geometry. [1]

  8. Chakravala method - Wikipedia

    en.wikipedia.org/wiki/Chakravala_method

    When a positive integer m is chosen so that (a + bm)/k is an integer, so are the other two numbers in the triple. Among such m, the method chooses one that minimizes the absolute value of m 2 − N and hence that of (m 2 − N)/k. Then the substitution relations are applied for m equal to the chosen value.

  9. Integer programming - Wikipedia

    en.wikipedia.org/wiki/Integer_programming

    These algorithms can also be used for mixed integer linear programs (MILP) - programs in which some variables are integer and some variables are real. [23] The original algorithm of Lenstra [ 14 ] : Sec.5 has run-time 2 O ( n 3 ) ⋅ p o l y ( d , L ) {\displaystyle 2^{O(n^{3})}\cdot poly(d,L)} , where n is the number of integer variables, d is ...