Search results
Results from the WOW.Com Content Network
Natural iron (26 Fe) consists of four stable isotopes: 5.845% 54 Fe (possibly radioactive with half-life > 4.4 × 10 20 years), [4] 91.754% 56 Fe, 2.119% 57 Fe and 0.286% 58 Fe. There are 28 known radioisotopes and 8 nuclear isomers, the most stable of which are 60 Fe (half-life 2.6 million years) and 55 Fe (half-life 2.7 years).
The rarer isotopes nickel-62 and iron-58, which both have higher binding energies, are not shown. Iron-56 (56 Fe) is the most common isotope of iron. About 91.754% of all iron is iron-56. Of all nuclides, iron-56 has the lowest mass per nucleon. With 8.8 MeV binding energy per nucleon, iron-56 is one of the most tightly bound nuclei. [1]
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
The large majority of an atom's mass comes from the protons and neutrons that make it up. The total number of these particles (called "nucleons") in a given atom is called the mass number. It is a positive integer and dimensionless (instead of having dimension of mass), because it expresses a count.
To reduce the disruptive energy, the weak interaction allows the number of neutrons to exceed that of protons—for instance, the main isotope of iron has 26 protons and 30 neutrons. Isotopes also exist where the number of neutrons differs from the most stable number for that number of nucleons.
For an ordinary atom which contains protons, neutrons and electrons, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small ...
For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl − anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes, and energy levels may differ, resulting in different nuclear ...
For many elements with atomic number Z small enough to occupy only the first three nuclear shells, that is up to that of calcium (Z = 20), there exists a stable isotope with N/Z ratio of one. The exceptions are beryllium ( N / Z = 1.25) and every element with odd atomic number between 9 and 19 inclusive (though in those cases N = Z + 1 always ...