enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetrical components - Wikipedia

    en.wikipedia.org/wiki/Symmetrical_components

    As shown in the figure to the above right, the three sets of symmetrical components (positive, negative, and zero sequence) add up to create the system of three unbalanced phases as pictured in the bottom of the diagram. The imbalance between phases arises because of the difference in magnitude and phase shift between the sets of vectors.

  3. Camber (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Camber_(aerodynamics)

    Camber is a complex property that can be more fully characterized by an airfoil's camber line, the curve Z(x) that is halfway between the upper and lower surfaces, and thickness function T(x), which describes the thickness of the airfoils at any given point. The upper and lower surfaces can be defined as follows:

  4. File:Unbalanced symmetrical components.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Unbalanced...

    File:Unbalanced symmetrical components.pdf. Add languages. ... and the necessary symmetrical components that will create the resulting three-phase system.

  5. Pitching moment - Wikipedia

    en.wikipedia.org/wiki/Pitching_moment

    The aerodynamic center of an airfoil is usually close to 25% of the chord behind the leading edge of the airfoil. When making tests on a model airfoil, such as in a wind-tunnel, if the force sensor is not aligned with the quarter-chord of the airfoil, but offset by a distance x, the pitching moment about the quarter-chord point, / is given by

  6. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    An airfoil with camber compared to a symmetrical airfoil The maximum lift force that can be generated by an airfoil at a given airspeed depends on the shape of the airfoil, especially the amount of camber (curvature such that the upper surface is more convex than the lower surface, as illustrated at right).

  7. Angle of attack - Wikipedia

    en.wikipedia.org/wiki/Angle_of_attack

    In fluid dynamics, angle of attack (AOA, α, or ) is the angle between a reference line on a body (often the chord line of an airfoil) and the vector representing the relative motion between the body and the fluid through which it is moving. [1] Angle of attack is the angle between the body's reference line and the oncoming flow.

  8. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  9. Supercritical airfoil - Wikipedia

    en.wikipedia.org/wiki/Supercritical_airfoil

    Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).