Search results
Results from the WOW.Com Content Network
The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
Simply, a collineation is a one-to-one map from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. One may formalize this using various ways of presenting a projective space. Also, the case of the projective line is special, and hence generally treated ...
The Simson line LN (red) of the triangle ABC with respect to point P on the circumcircle. In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2]
A permutation of the seven points that carries collinear points (points on the same line) to collinear points is called a collineation or symmetry of the plane. The collineations of a geometry form a group under composition, and for the Fano plane this group (PΓL(3, 2) = PGL(3, 2)) has 168 elements.
the points AB ∩ ab, AC ∩ ac and BC ∩ bc are collinear. The points A, B, a and b are coplanar (lie in the same plane) because of the assumed concurrency of Aa and Bb. Therefore, the lines AB and ab belong to the same plane and must intersect. Further, if the two triangles lie on different planes, then the point AB ∩ ab belongs to
2. A fixed point of a correspondence, in other words a point of a variety corresponding to itself under a correspondence. (Coolidge 1931, p. 126) collinear On the same line collineation A collineation is an isomorphism from one projective space to another, often to itself. (Semple & Roth 1949, p.6) See correlation. complete 1.
For instance, the Sylvester–Gallai theorem, stating that any non-collinear set of points in the plane has an ordinary line containing exactly two points, transforms under projective duality to the statement that any projective arrangement of finitely many lines with more than one vertex has an ordinary point, a vertex where only two lines cross.