Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation (difference in elevation of the two rails) in the case of train tracks , determines the ...
In Tractatus de configurationibus qualitatum et motuum, [1] the 14th-century philosopher and mathematician Nicole Oresme introduces the concept of curvature as a measure of departure from straightness; for circles he has the curvature as being inversely proportional to the radius; and he attempts to extend this idea to other curves as a continuously varying magnitude.
The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r. Note that, in contrast to Cartesian coordinates, the independent variable φ is the second entry in the ordered pair. Different forms of symmetry can be deduced from the equation of a polar function r:
Curvature is usually measured in radius of curvature.A small circle can be easily laid out by just using radius of curvature, but degree of curvature is more convenient for calculating and laying out the curve if the radius is as large as a kilometer or mile, as is needed for large scale works like roads and railroads.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown.. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them.
These curves are called rectifiable and the arc length is defined as the number . A signed arc length can be defined to convey a sense of orientation or "direction" with respect to a reference point taken as origin in the curve (see also: curve orientation and signed distance). [2]