enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to ...

  3. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Since the time taken on different inputs of the same size can be different, the worst-case time complexity () is defined to be the maximum time taken over all inputs of size . If T ( n ) {\displaystyle T(n)} is a polynomial in n {\displaystyle n} , then the algorithm is said to be a polynomial time algorithm.

  4. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    In other words, for a given input size n greater than some n 0 and a constant c, the run-time of that algorithm will never be larger than c × f(n). This concept is frequently expressed using Big O notation. For example, since the run-time of insertion sort grows quadratically as its input size increases, insertion sort can be said to be of ...

  5. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  6. Kolmogorov complexity - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_complexity

    Proof: By symmetry, it suffices to prove that there is some constant c such that for all strings s. K 1 (s) ≤ K 2 (s) + c. Now, suppose there is a program in the language L 1 which acts as an interpreter for L 2: function InterpretLanguage(string p) where p is a program in L 2. The interpreter is characterized by the following property:

  7. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  8. Yao's principle - Wikipedia

    en.wikipedia.org/wiki/Yao's_principle

    When the cost denotes the running time of an algorithm, Yao's principle states that the best possible running time of a deterministic algorithm, on a hard input distribution, gives a lower bound for the expected time of any Las Vegas algorithm on its worst-case input. Here, a Las Vegas algorithm is a randomized algorithm whose runtime may vary ...

  9. Algorithmic complexity - Wikipedia

    en.wikipedia.org/wiki/Algorithmic_complexity

    In computational complexity theory, although it would be a non-formal usage of the term, the time/space complexity of a particular problem in terms of all algorithms that solve it with computational resources (i.e., time or space) bounded by a function of the input's size.