Search results
Results from the WOW.Com Content Network
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The total energy per unit volume stored by the electromagnetic field is [19] = | | + | | where ε is the permittivity of the medium in which the field exists, its magnetic permeability, and E and B are the electric and magnetic field vectors. As E and B fields are coupled, it would be misleading to split this expression into "electric" and ...
As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field.
The equations introduce the electric field, E, a vector field, and the magnetic field, B, a pseudovector field, each generally having a time and location dependence. The sources are The sources are the total electric charge density (total charge per unit volume), ρ , and
E is the magnitude of the electric field applied to a material, v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and; μ e is the electron mobility. The hole mobility is defined by a similar equation: =.
Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.
The electric field is perpendicular, locally, to the equipotential surface of the conductor, and zero inside; its flux πa 2 ·E, by Gauss's law equals πa 2 ·σ/ε 0. Thus, σ = ε 0 E. In problems involving conductors set at known potentials, the potential away from them is obtained by solving Laplace's equation, either analytically or ...