Search results
Results from the WOW.Com Content Network
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio
Of the 26 "monoisotopic" elements that have only a single stable isotope, all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element with stable isotopes, except for helium, beryllium, and carbon, has at least three.
The 80 elements with one or more stable isotopes comprise a total of 251 nuclides that have not been shown to decay using current equipment. Of these 80 elements, 26 have only one stable isotope and are called monoisotopic. The other 56 have more than one stable isotope. Tin has ten stable isotopes, the largest number of any element.
It is also the isotope with the lowest mass per nucleon, 930.412 MeV/c 2, though not the isotope with the highest nuclear binding energy per nucleon, which is nickel-62. [7] However, because of the details of how nucleosynthesis works, 56 Fe is a more common endpoint of fusion chains inside supernovae , where it is mostly produced as 56 Ni.
Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of 143(36) yoctoseconds, though the half-life of nitrogen-9 has not been measured exactly.