Search results
Results from the WOW.Com Content Network
The sum is taken over all combinations of nonnegative integer indices k 1 through k m such that the sum of all k i is n. That is, for each term in the expansion, the exponents of the x i must add up to n. [1] [a] In the case m = 2, this statement reduces to that of the binomial theorem. [1]
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The method of complements was used in many mechanical calculators as an alternative to running the gears backwards. For example: Pascal's calculator had two sets of result digits, a black set displaying the normal result and a red set displaying the nines' complement of this. A horizontal slat was used to cover up one of these sets, exposing ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
For by adding 100 terms of this series, we get −50, however, the sum of 101 terms gives +51, which is quite different from 1 ⁄ 4 and becomes still greater when one increases the number of terms. But I have already noticed at a previous time, that it is necessary to give to the word sum a more extended meaning ...
Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
For example, consider the sum: + + + + = This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: (+)