enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1. [1] [2] [3]

  3. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    The above efficiency formulas are based on simple idealized mathematical models of engines, with no friction and working fluids that obey simplified thermodynamic models. Real engines have many departures from ideal behavior that waste energy, reducing actual efficiencies below the theoretical values given above. Examples are: friction of ...

  4. Carnot's theorem (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    The maximum efficiency (i.e., the Carnot heat engine efficiency) of a heat engine operating between hot and cold reservoirs, denoted as H and C respectively, is the ratio of the temperature difference between the reservoirs to the hot reservoir temperature, expressed in the equation

  5. Power plant efficiency - Wikipedia

    en.wikipedia.org/wiki/Power_plant_efficiency

    To express the efficiency of a generator or power plant as a percentage, invert the value if dimensionless notation or same unit are used. For example: A heat rate value of 5 gives an efficiency factor of 20%. A heat rate value of 2 kWh/kWh gives an efficiency factor of 50%. A heat rate value of 4 MJ/MJ gives an efficiency factor of 25%.

  6. Coefficient of performance - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_performance

    [1] [2] Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs. The COP is used in thermodynamics . The COP usually exceeds 1, especially in heat pumps, because instead of just converting work to heat (which, if 100% efficient, would be a COP of 1), it pumps additional heat from a heat source to ...

  7. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  8. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Shockley–Queisser_limit

    where u, v, and m are respectively the ultimate efficiency factor, the ratio of open-circuit voltage V op to band-gap voltage V g, and the impedance matching factor (all discussed above), and V c is the thermal voltage, and V s is the voltage equivalent of the temperature of the Sun. Letting t s be 1, and using the values mentioned above of 44% ...

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume: