Search results
Results from the WOW.Com Content Network
The general structure of a phosphite ester showing the lone pairs on the P. In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR) 3. They can be considered as esters of an unobserved tautomer phosphorous acid, H 3 PO 3, with the simplest example being trimethylphosphite ...
Phosphonites are generally more reactive than phosphite esters. They react to produce phosphinates. Heating is also required for the reaction, but pyrolysis of the ester to an acid is a common side reaction. The poor availability of substituted phosphonites limits the usage of this class of reagent in the Arbuzov reaction.
Various specialised methods have been developed on the laboratory-scale for scientific investigations. These are rarely employed in bulk manufacturing. Examples include the Atherton-Todd reaction, which converts a dialkyl phosphite to a phosphoryl chloride. This can then react with an alcohol to give an organophosphate and HCl.
An ester of carboxylic acid.R stands for any group (organic or inorganic) and R′ stands for organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (−R).
Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. [1] They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment.
The Michaelis–Arbuzov reaction is the chemical reaction of a trivalent phosphorus ester with an alkyl halide to form a pentavalent phosphorus species and another alkyl halide. Commonly, the phosphorus substrate is a phosphite ester (P(OR) 3) and the alkylating agent is an alkyl iodide. [11] The mechanism of the Michaelis–Arbuzov reaction
Since orthophosphoric acid has three −OH groups, it can esterify with one, two, or three alcohol molecules to form a mono-, di-, or triester. See the general structure image of an ortho- (or mono-) phosphate ester below on the left, where any of the R groups can be a hydrogen or an organic radical. Di- and tripoly- (or tri-) phosphate esters ...
Diethyl phosphite hydrolyzes to give phosphorous acid. Hydrogen chloride accelerates this conversion.: [2] Diethyl phosphite undergoes transesterification upon treating with an alcohol. For alcohols of high boiling points, the conversion can be driven by removal of ethanol: [8] (C 2 H 5 O) 2 P(O)H + 2 ROH → (RO) 2 P(O)H + 2 C 2 H 5 OH