Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Moist heat causes destruction of micro-organisms by denaturation of macromolecules, primarily proteins. Destruction of cells by lysis may also play a role. While "sterility" implies the destruction of free-living organisms which may grow within a sample, sterilization does not necessarily entail destruction of infectious matter.
A "hot-start" polymerase enzyme whose activity is blocked unless it is heated to high temperature (e.g., 90–98˚C) during the denaturation step of the first cycle, is commonly used to prevent non-specific priming during reaction preparation at lower temperatures. Chemically mediated hot-start PCRs require higher temperatures and longer ...
Protein anabolism is the process by which proteins are formed from amino acids. It relies on five processes: amino acid synthesis, transcription , translation , post translational modifications , and protein folding .
In the less extensive technique of equilibrium unfolding, the fractions of folded and unfolded molecules (denoted as and , respectively) are measured as the solution conditions are gradually changed from those favoring the native state to those favoring the unfolded state, e.g., by adding a denaturant such as guanidinium hydrochloride or urea.
Like other biomolecules, proteins can also be broken down by high heat alone. At 250 °C, the peptide bond may be easily hydrolyzed, with its half-life dropping to about a minute. [27] [30] Protein may also be broken down without hydrolysis through pyrolysis; small heterocyclic compounds may start to form upon
The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying ...
Heat shock protein chaperones are classified based on their observed molecular weights into Hsp60, Hsp70, Hsp90, Hsp104, and small Hsps. [5] The Hsp60 family of protein chaperones are termed chaperonins, and are characterized by a stacked double-ring structure and are found in prokaryotes, in the cytosol of eukaryotes, and in mitochondria.