Search results
Results from the WOW.Com Content Network
Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [2] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles. This large inclination means ...
For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation ...
The 3:4, 3:5, 4:7 and 2:5 resonances are less populated. [150] Neptune has a number of known trojan objects occupying both the Sun–Neptune L 4 and L 5 Lagrangian points—gravitationally stable regions leading and trailing Neptune in its orbit, respectively. [151] Neptune trojans can be viewed as being in a 1:1 resonance with Neptune.
Triton's orbit precesses forward relative to Neptune's rotation with a period of about 678 Earth years (4.1 Neptunian years), [4] [5] making its Neptune-orbit-relative inclination vary between 127° and 173°. That inclination is currently 130°; Triton's orbit is now near its maximum departure from coplanarity with Neptune's.
Proteus (/ ˈ p r oʊ t i ə s / PROH-tee-əs), also known as Neptune VIII, is the second-largest Neptunian moon, and Neptune's largest inner satellite. Discovered by Voyager 2 in 1989, it is named after Proteus , the shape-changing sea god of Greek mythology . [ 11 ]
For the past 5 million years, Earth's obliquity has varied between 22°2′33″ and 24°30′16″, with a mean period of 41,040 years. This cycle is a combination of precession and the largest term in the motion of the ecliptic. For the next 1 million years, the cycle will carry the obliquity between 22°13′44″ and 24°20′50″. [25]
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
Neptune is 17 times the mass of Earth and is slightly more massive than its near-twin Uranus, which is 15 times the mass of Earth and slightly larger than Neptune. [ a ] Neptune orbits the Sun once every 164.8 years at an average distance of 30.1 astronomical units (4.50 × 10 9 km).