Search results
Results from the WOW.Com Content Network
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.
Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference (the transmission of centripetal acceleration via normal force in the non-rotating frame of reference), as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from ...
The 12th-century scholar Al-Khazini suggested that the gravity an object contains varies depending on its distance from the centre of the universe (referring to the centre of the Earth). Al-Biruni and Al-Khazini studied the theory of the centre of gravity, and generalized and applied it to three-dimensional bodies.
Before Newton’s law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]
That is, in stronger gravitational fields the size of cells decreases, and in weaker gravitational fields the size of cells increases. Gravity is thus a limiting factor in the growth of individual cells. Cells which were naturally larger than the size that gravity alone would allow for had to develop means to protect against internal sedimentation.
Right after the Big Bang, gravitational waves may have built on each other to create huge standing waves of gravitational energy.
Gravitational waves are transient displacements in a gravitational field—generated by the relative motion of gravitating masses—that radiate outward from their source at the speed of light. [1] They were proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves ...
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.