Search results
Results from the WOW.Com Content Network
An alternative expression for the escape velocity v e particularly useful at the surface on the body is: = where r is the distance between the center of the body and the point at which escape velocity is being calculated and g is the gravitational acceleration at that distance (i.e., the surface gravity). [11]
The formula for an escape velocity is derived as follows. The specific energy (energy per unit mass) of any space vehicle is composed of two components, the specific potential energy and the specific kinetic energy. The specific potential energy associated with a planet of mass M is given by
But the maximal velocity on the new orbit could be approximated to 33.5 km/s by assuming that it reached practical "infinity" at 3.5 km/s and that such Earth-bound "infinity" also moves with Earth's orbital velocity of about 30 km/s. The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5]
The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula. If the numerical value a {\displaystyle \mathbf {a} } is measured in meters per second squared, then the numerical values v {\displaystyle v\,} will be in meters per second, r {\displaystyle r\,} in meters, and ω {\displaystyle ...
A radial parabolic trajectory is a non-periodic trajectory on a straight line where the relative velocity of the two objects is always the escape velocity. There are two cases: the bodies move away from each other or towards each other. There is a rather simple expression for the position as function of time:
In the special case of perfectly circular orbits, the semimajor axis a is equal to the radius of the orbit, and the orbital velocity is constant and equal to = where: r is the circular orbit's radius in meters, This corresponds to 1 ⁄ √2 times (≈ 0.707 times) the escape velocity.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.