Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Furthermore, one can assess whether the folding proceeds according to a two-state unfolding as described above. This can be done with differential scanning calorimetry by comparing the calorimetric enthalpy of denaturation i.e. the area under the peak, A peak {\displaystyle A_{\text{peak}}} to the van 't Hoff enthalpy described as follows:
The process of DNA denaturation can be used to analyze some aspects of DNA. Because cytosine / guanine base-pairing is generally stronger than adenine / thymine base-pairing, the amount of cytosine and guanine in a genome is called its GC-content and can be estimated by measuring the temperature at which the genomic DNA melts. [2]
The HD gene [8] is found in all human genomes. In the event that a slippage event occurs there can be a large expansion in the tandem repeats of the HD gene. [8] An individual who is not affected by Huntington's disease will have 6-35 tandem repeats at the HD locus. However, an affected individual will have 36- 121 repeats present. [7]
Heat denaturation of DNA, also called melting, causes the double helix structure to unwind to form single stranded DNA. When DNA in solution is heated above its melting temperature (usually more than 80 °C), the double-stranded DNA unwinds to form single-stranded DNA. The bases become unstacked and can thus absorb more light.
They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation. Proteins can denature in environmental conditions the protein is not made for. [6]
Many allergies are caused by the incorrect folding of some proteins because the immune system does not produce the antibodies for certain protein structures. [5] Denaturation of proteins is a process of transition from a folded to an unfolded state. It happens in cooking, burns, proteinopathies, and other contexts. Residual structure present ...
The phage gene 52 protein shares homology with the bacterial gyrase gyrA subunit [18] and the phage gene 39 protein shares homology with the gyrB subunit. [19] Since the host E. coli DNA gyrase can partially compensate for the loss of the phage gene products, mutants defective in either genes 39, 52 or 60 do not completely abolish phage DNA ...