Search results
Results from the WOW.Com Content Network
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
In structural biology, resolution can be broken down into 4 groups: (1) sub-atomic, when information about the electron density is obtained and quantum effects can be studied, (2) atomic, individual atoms are visible and an accurate three-dimensional model can be constructed, (3) helical, secondary structure, such as alpha helices and beta sheets; RNA helices (in ribosomes), (4) domain, no ...
Consider the scattering of a beam of wavelength by an assembly of particles or atoms stationary at positions , =, …,.Assume that the scattering is weak, so that the amplitude of the incident beam is constant throughout the sample volume (Born approximation), and absorption, refraction and multiple scattering can be neglected (kinematic diffraction).
In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03. Crystallographers also use the Free R-Factor ( R F r e e {\displaystyle R_{Free}} ) [ 3 ] to assess possible overmodeling of the data.
The number and energy of the X-rays emitted from a specimen can be measured by an energy-dispersive spectrometer. As the energies of the X-rays are characteristic of the difference in energy between the two shells and of the atomic structure of the emitting element, EDS allows the elemental composition of the specimen to be measured.
Usually X-ray diffraction in spectrometers is achieved on crystals, but in Grating spectrometers, the X-rays emerging from a sample must pass a source-defining slit, then optical elements (mirrors and/or gratings) disperse them by diffraction according to their wavelength and, finally, a detector is placed at their focal points.
It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials. The term WAXS is commonly used in polymer sciences to differentiate it from SAXS but many scientists doing "WAXS" would describe the measurements as Bragg/X-ray/powder diffraction or crystallography .