Search results
Results from the WOW.Com Content Network
The earliest reference to a similar formula appears to be Armstrong (1985, p. 348), where it is called "adjusted MAPE" and is defined without the absolute values in the denominator.
Their difference is divided by the actual value A t. The absolute value of this ratio is summed for every forecasted point in time and divided by the number of fitted points n . MAPE in regression problems
where is the actual value of the quantity being forecast, is the forecast, and is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a ...
A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.
The difference between the height of each man in the sample and the unobservable population mean is a statistical error, whereas; The difference between the height of each man in the sample and the observable sample mean is a residual.
Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file