Search results
Results from the WOW.Com Content Network
Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group. [ 1 ] [ 2 ] Catalytic hydrogenation
The reaction mechanism involves the acylation and activation of the acid 1 to the mixed anhydride 3. The amide will serve as a nucleophile for the cyclization forming the azlactone 4. Deprotonation and acylation of the azlactone forms the key carbon-carbon bond. Subsequent ring-opening of 6 and decarboxylation give the final keto-amide product ...
Illustrative is the conversion of isobutylene to tert-butylamine using HCN and sulfuric acid followed by base neutralization. The weight of the salt byproduct is greater than the weight of the amine. [12] In the laboratory, the Ritter reaction suffers from the necessity of an extremely strong acid catalyst.
Reaction mechanism for the amine formation from a carboxylic acid via Schmidt reaction. In the reaction mechanism for the Schmidt reaction of ketones , the carbonyl group is activated by protonation for nucleophilic addition by the azide, forming azidohydrin 3 , which loses water in an elimination reaction to diazoiminium 5.
Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride (see amide reduction). The Weinreb–Nahm ketone synthesis. The major advantage of this method over addition of organometallic reagents to more typical acyl compounds is that it avoids the common problem of over-addition.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Compared to amines, amides are very weak bases. While the conjugate acid of an amine has a pK a of about 9.5, the conjugate acid of an amide has a pK a around −0.5. Therefore, compared to amines, amides do not have acid–base properties that are as noticeable in water. This relative lack of basicity is explained by the withdrawing of ...
Another common example is the reaction of a primary amine or secondary amine with a carboxylic acid or with a carboxylic acid derivative to form an amide. This reaction is widely used, especially in the synthesis of peptides. On the simple addition of an amine to a carboxylic acid, a salt of the organic acid and base is obtained.