Search results
Results from the WOW.Com Content Network
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
For the statistic t, with ν degrees of freedom, A(t | ν) is the probability that t would be less than the observed value if the two means were the same (provided that the smaller mean is subtracted from the larger, so that t ≥ 0). It can be easily calculated from the cumulative distribution function F ν (t) of the t distribution:
The log-t distribution has the probability density function: (, ^, ^) = (+) ^ (+ ( ^ ^)) +,where ^ is the location parameter of the underlying (non-standardized) Student's t-distribution, ^ is the scale parameter of the underlying (non-standardized) Student's t-distribution, and is the number of degrees of freedom of the underlying Student's t-distribution. [1]
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
The phrase "T distribution" may refer to Student's t-distribution in univariate probability theory, Hotelling's T-square distribution in multivariate statistics.
Where n is the total number of scores, and t i is the number of scores in the ith sample. The approximation to the standard normal distribution can be improved by the use of a continuity correction: S c = |S| – 1. Thus 1 is subtracted from a positive S value and 1 is added to a negative S value. The z-score equivalent is then given by
The test is based on the work of Michael E. Sobel, [1] [2] and is an application of the delta method. In mediation, the relationship between the independent variable and the dependent variable is hypothesized to be an indirect effect that exists due to the influence of a third variable (the mediator).
In statistics, the Durbin–Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals (prediction errors) from a regression analysis. It is named after James Durbin and Geoffrey Watson. The small sample distribution of this ratio was derived by John von Neumann (von Neumann, 1941).