enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Branch point - Wikipedia

    en.wikipedia.org/wiki/Branch_point

    In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a matter of convenience. The logarithm has a jump discontinuity of 2 π i when crossing the branch cut. The logarithm can be made ...

  3. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    However, the important thing to note is that z 1/2 = e (Log z)/2, so z 1/2 has a branch cut. This affects our choice of the contour C. Normally the logarithm branch cut is defined as the negative real axis, however, this makes the calculation of the integral slightly more complicated, so we define it to be the positive real axis.

  4. Riemann–Hilbert problem - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hilbert_problem

    Suppose that is a smooth, simple, closed contour in the complex plane. [2] Divide the plane into two parts denoted by + (the inside) and (the outside), determined by the index of the contour with respect to a point.

  5. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The branch point for the principal branch is at z = − ⁠ 1 / e ⁠, with a branch cut that extends to −∞ along the negative real axis. This branch cut separates the principal branch from the two branches W −1 and W 1. In all branches W k with k ≠ 0, there is a branch point at z = 0 and a branch cut along the entire negative real axis.

  6. Exponential integral - Wikipedia

    en.wikipedia.org/wiki/Exponential_integral

    The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis. This formula can be used to compute E 1 ( x ) {\displaystyle E_{1}(x)} with floating point operations for real x {\displaystyle x} between 0 and 2.5.

  7. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

  8. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    When the cut is genuinely required, the function will have distinctly different values on each side of the branch cut. The shape of the branch cut is a matter of choice, even though it must connect two different branch points (such as z = 0 {\displaystyle z=0} and z = ∞ {\displaystyle z=\infty } for log ⁡ ( z ) {\displaystyle \log(z ...

  9. Itô calculus - Wikipedia

    en.wikipedia.org/wiki/Itô_calculus

    Then, the integral can be shown to exist separately with respect to M and A and combined using linearity, H · X = H · M + H · A, to get the integral with respect to X. The standard Lebesgue–Stieltjes integral allows integration to be defined with respect to finite variation processes, so the existence of the Itô integral for ...