Search results
Results from the WOW.Com Content Network
To calculate this integral, one uses the function = ( +) and the branch of the logarithm corresponding to −π < arg z ≤ π. We will calculate the integral of f(z) along the keyhole contour shown at right. As it turns out this integral is a multiple of the initial integral that we wish to calculate and by the Cauchy residue theorem we have
In particular, a branch of the logarithm exists in the complement of any ray from the origin to infinity: a branch cut. A common choice of branch cut is the negative real axis, although the choice is largely a matter of convenience. The logarithm has a jump discontinuity of 2 π i when crossing the branch cut. The logarithm can be made ...
The branch point for the principal branch is at z = − 1 / e , with a branch cut that extends to −∞ along the negative real axis. This branch cut separates the principal branch from the two branches W −1 and W 1. In all branches W k with k ≠ 0, there is a branch point at z = 0 and a branch cut along the entire negative real axis.
The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis. This formula can be used to compute E 1 ( x ) {\displaystyle E_{1}(x)} with floating point operations for real x {\displaystyle x} between 0 and 2.5.
For example, the principal branch has a branch cut along the negative real axis. If the function L ( z ) {\displaystyle \operatorname {L} (z)} is extended to be defined at a point of the branch cut, it will necessarily be discontinuous there; at best it will be continuous "on one side", like Log z {\displaystyle \operatorname {Log} z ...
For complex arguments z with | z | ≥ 1 it can be analytically continued along any path in the complex plane that avoids the branch points 1 and infinity. In practice, most computer implementations of the hypergeometric function adopt a branch cut along the line z ≥ 1. As c → −m, where m is a non-negative integer, one has 2 F 1 (z) → ∞.
If we consider functions of the form () = where is any complex number and is a complex number in a slit complex plane that excludes the branch point of 0 and any branch cut connected to it, and we use the conventional multivalued definition := (), then it is straightforward to show that, on each branch of the complex logarithm, the same ...
When the cut is genuinely required, the function will have distinctly different values on each side of the branch cut. The shape of the branch cut is a matter of choice, even though it must connect two different branch points (such as z = 0 {\displaystyle z=0} and z = ∞ {\displaystyle z=\infty } for log ( z ) {\displaystyle \log(z ...