Search results
Results from the WOW.Com Content Network
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as prisms ...
A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.
Many traditional polyhedral forms are n-dimensional polyhedra. Other examples include: A half-space is a polyhedron defined by a single linear inequality, a 1 T x ≤ b 1. A hyperplane is a polyhedron defined by two inequalities, a 1 T x ≤ b 1 and a 1 T x ≥ b 1 (which is equivalent to -a 1 T x ≤ -b 1). A quadrant in the plane.
A Johnson solid is a convex polyhedron whose faces are all regular polygons. [1] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...
These require a more general definition of polyhedra. Grünbaum (1994) gave a rather complicated definition of a polyhedron, while McMullen & Schulte (2002) gave a simpler and more general definition of a polyhedron: in their terminology, a polyhedron is a 2-dimensional abstract polytope with a non-degenerate 3-dimensional realization. Here an ...
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas.
It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry. Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both. This list includes these: