Search results
Results from the WOW.Com Content Network
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
It is often useful to give the gyrofrequency a sign with the definition = or express it in units of hertz with =. For electrons, this frequency can be reduced to , = (/).. In cgs-units the gyroradius = | | and the corresponding gyrofrequency = | | include a factor , that is the velocity of light, because the magnetic field is expressed in units [] = / /.
For this case the radius of gyration is approximated using Flory's mean field approach which yields a scaling for the radius of gyration of: R g ∼ N ν {\displaystyle R_{g}\sim N^{\nu }} , where R g {\displaystyle R_{g}} is the radius of gyration of the polymer, N {\displaystyle N} is the number of bond segments (equal to the degree of ...
A Guinier plot made with X-ray scattering in the small-angle regime. The slopes of these linear curves correspond to the radius of gyration of the polymers in the solution, while different curves correspond to different concentrations. and by utilising the definition of the radius of gyration:
It is important to note that the size determined by dynamic light scattering is the size of a sphere that moves in the same manner as the scatterer. So, for example, if the scatterer is a random coil polymer, the determined size is not the same as the radius of gyration determined by static light scattering. It is also useful to point out that ...
Since the gyration tensor is a symmetric 3x3 matrix, ... The squared radius of gyration is the sum of the principal moments: = ...
Radius of gyration is used to capture just that and it indicates the characteristic distance travelled by a person during a time period t. [13] Each user, within his radius of gyration r g ( t ) {\displaystyle r_{g}(t)} , will choose his trip distance according to P ( r ) {\displaystyle P(r)} .
The plasma collisionality is defined as [4] [5] =, where denotes the electron-ion collision frequency, is the major radius of the plasma, is the inverse aspect-ratio, and is the safety factor. The plasma parameters m i {\displaystyle m_{\mathrm {i} }} and T i {\displaystyle T_{\mathrm {i} }} denote, respectively, the mass and temperature of the ...