Ad
related to: dynamic balancing of rotating machinery and supply components
Search results
Results from the WOW.Com Content Network
Dynamic balancing was formerly the province of expensive equipment, but users with just occasional need to quench running vibrations may use the built in accelerometers of a smart phone and a spectrum analysis application. See ref 3 for example. A less tedious means of achieving dynamic balance requires just four measurements.
Rotating machinery produces vibrations depending upon the structure of the mechanism involved in the process. Any faults in the machine can increase or excite the vibration signatures. Vibration behavior of the machine due to imbalance is one of the main aspects of rotating machinery which must be studied in detail and considered while designing.
A balancing machine is a measuring tool used for balancing rotating machine parts such as rotors for electric motors, fans, turbines, disc brakes, disc drives, propellers and pumps. The machine usually consists of two rigid pedestals, with suspension and bearings on top supporting a mounting platform. The unit under test is bolted to the ...
Two-plane, or dynamic, balancing is necessary if the out-of-balance couple at speed needs to be balanced. The second plane used is in the opposite wheel. Two-plane, or dynamic, balancing of a locomotive wheel set is known as cross-balancing. [11] Cross-balancing was not recommended by the American Railway Association until 1931.
Rotating unbalance is the uneven distribution of mass around an axis of rotation. A rotating mass, or rotor, is said to be out of balance when its center of mass (inertia axis) is out of alignment with the center of rotation (geometric axis). Unbalance causes a moment which gives the rotor a wobbling movement characteristic of vibration of ...
Small mismatches between the total demand and total load are typical and initially are taken care of by the kinetic energy of the rotating machinery (mostly synchronous generators): when there is too much supply, the devices absorb the excess, and frequency goes above the scheduled rate, conversely, too much demand causes the generator to ...
In the case of bearings, run-out will cause vibration of the machine and increased loads on the bearings. [1] Run-out is dynamic and cannot be compensated. If a rotating component, such as a drill chuck, does not hold the drill centrally, then as it rotates the rotating drill will turn about a secondary axis. Run-out has two main forms: [2]
Elaborating, a turbomachine is a power or heat generating machine which employs the dynamic action of a rotating element, the rotor; the action of the rotor changes the energy level of the continuously flowing fluid through the machine. Turbines, compressors and fans are all members of this family of machines. [6]
Ad
related to: dynamic balancing of rotating machinery and supply components