Search results
Results from the WOW.Com Content Network
The reduction needs to solve twice the similar problem where the center of the sought-after enclosing circle is constrained to lie on a given line. The solution of the subproblem is either the solution of the unconstrained problem or it is used to determine the half-plane where the unconstrained solution center is located.
Similar concepts are used for sequences of discretizations. For instance, ideally the solution of a differential equation discretized via a regular grid will converge to the solution of the continuous equation as the grid spacing goes to zero, and if so the asymptotic rate and order of that convergence are important properties of the gridding ...
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
Another generalization is to calculate the number of coprime integer solutions , to the inequality m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.\,} This problem is known as the primitive circle problem , as it involves searching for primitive solutions to the original circle problem. [ 9 ]
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.
[2] [3] Specifically, each of the sequences AC, AB, AD; BC, BA, BD; CA, CD, CB; and DA, DC, DB are harmonic progressions, where each of the distances is signed according to a fixed orientation of the line. In a triangle, if the altitudes are in arithmetic progression, then the sides are in harmonic progression.