Search results
Results from the WOW.Com Content Network
[18] [19] Today, the degree, 1 / 360 of a turn, or the mathematically more convenient radian, 1 / 2 π of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
This is not the usual way to specify slope; this nonstandard expression follows the sine function rather than the tangent function, so it calls a 45 degree slope a 71 percent grade instead of a 100 percent. But in practice the usual way to calculate slope is to measure the distance along the slope and the vertical rise, and calculate the ...
As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.
The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.
The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Note that the Clarke generalized gradient is set-valued—that is, at each , the function value () is a set. More generally, given a Banach space X {\displaystyle X} and a subset Y ⊂ X , {\displaystyle Y\subset X,} the Clarke generalized directional derivative and generalized gradients are defined as above for a locally Lipschitz continuous ...