enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Admittance parameters - Wikipedia

    en.wikipedia.org/wiki/Admittance_parameters

    Admittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks.

  3. Admittance - Wikipedia

    en.wikipedia.org/wiki/Admittance

    Admittance Y, measured in siemens, is defined as the inverse of impedance Z, measured in ohms: Y ≡ 1 Z {\displaystyle Y\equiv {\frac {1}{Z}}} Resistance is a measure of the opposition of a circuit to the flow of a steady current, while impedance takes into account not only the resistance but also dynamic effects (known as reactance ).

  4. Impedance parameters - Wikipedia

    en.wikipedia.org/wiki/Impedance_parameters

    where Z is an N × N matrix the elements of which can be indexed using conventional matrix notation. In general the elements of the Z-parameter matrix are complex numbers and functions of frequency. For a one-port network, the Z-matrix reduces to a single element, being the ordinary impedance measured between the two terminals. The Z-parameters ...

  5. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    In electrical engineering, susceptance (B) is the imaginary part of admittance (Y = G + jB), where the real part is conductance (G). The reciprocal of admittance is impedance (Z = R + jX), where the imaginary part is reactance (X) and the real part is resistance (R). In SI units, susceptance is measured in siemens (S).

  6. Characteristic impedance - Wikipedia

    en.wikipedia.org/wiki/Characteristic_impedance

    If a new pair of impedance and admittance is added in front of the network, its input impedance remains unchanged since the network is infinite. Thus, it can be reduced to a finite network with one series impedance Z {\displaystyle \ Z\ } and two parallel impedances 1 / Y {\displaystyle \ 1/Y\ } and Z IT . {\displaystyle \ Z_{\text{IT}}~.}

  7. Impedance of free space - Wikipedia

    en.wikipedia.org/wiki/Impedance_of_free_space

    Z 0 = 376.730 313 412 (59) Ω, where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is, the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ 0 and the speed of light in vacuum c 0.

  8. Performance and modelling of AC transmission - Wikipedia

    en.wikipedia.org/wiki/Performance_and_modelling...

    Due to the line length being considerably high, shunt capacitance along with admittance Y of the network does play a role in calculating the effective circuit parameters, unlike in the case of short transmission lines. For this reason, the modelling of a medium length transmission line is done using lumped shunt admittance along with the lumped ...

  9. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    The normalised admittance y T is the reciprocal of the normalised impedance z T, so = Therefore: = + and = + The Y Smith chart appears like the normalised impedance ...