Search results
Results from the WOW.Com Content Network
These pigments enter a high-energy state upon absorbing a photon which they can release in the form of chemical energy. This can occur via light-driven pumping of ions across a biological membrane (e.g. in the case of the proton pump bacteriorhodopsin ) or via excitation and transfer of electrons released by photolysis (e.g. in the photosystems ...
The pigments which absorb light at the highest energy level are found furthest from the reaction center. On the other hand, the pigments with the lowest energy level are more closely associated with the reaction center. Energy will be efficiently transferred from the outer part of the antenna complex to the inner part.
Chlorophyll is the primary pigment in plants; it is a chlorin that absorbs blue and red wavelengths of light while reflecting a majority of green. It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b.
Eukaryotic photoautotrophs absorb photonic energy through the photopigment chlorophyll (a porphyrin derivative) in their endosymbiont chloroplasts, while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in free-floating cytoplasmic thylakoids or, in rare cases, membrane-bound retinal derivatives such as ...
Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene, two pheophytin, two plastoquinone, two heme, one bicarbonate, 20 lipids, the Mn 4 CaO 5 cluster (including two chloride ions), one non heme Fe 2+ and two putative Ca 2+ ions per monomer. [4] There are several crystal structures of photosystem II. [5]
Each absorbed photon causes the formation of an exciton (an electron excited to a higher energy state) in the pigment molecule. The energy of the exciton is transferred to a chlorophyll molecule ( P680 , where P stands for pigment and 680 for its absorption maximum at 680 nm) in the reaction center of photosystem II via resonance energy transfer .
Similarly, color is due to the energy absorbed by the compound, when an electron transitions from the HOMO to the LUMO. Lycopene is a classic example of a compound with extensive conjugation (11 conjugated double bonds), giving rise to an intense red color (lycopene is responsible for the color of tomatoes ).
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.