Search results
Results from the WOW.Com Content Network
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and
This radiative ground wave is known as Norton surface wave, or more properly Norton ground wave, because ground waves in radio propagation are not confined to the surface. Another type of surface wave is the non-radiative, bound-mode Zenneck surface wave or Zenneck–Sommerfeld surface wave .
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
Surface-wave inversion is the method by which elastic properties, density, and thickness of layers in the subsurface are obtained through analysis of surface-wave dispersion. [2] The entire inversion process requires the gathering of seismic data, the creation of dispersion curves, and finally the inference of subsurface properties.
Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...
The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal ("surface plasmon") and electromagnetic waves in the air or dielectric ("polariton"). [ 1 ] They are a type of surface wave , guided along the interface in much the same way that light can be guided by an optical fiber.
In this equation, represents the maximum particle displacement in the surface wave (sum of two horizontal Euclidean vectors), in micrometers; T represents the corresponding period, in seconds; Δ Is the epicentral distance, in degrees; and () is a gauge function. Generally, the expression for the gauge function is
Significant wave height H m0, defined in the frequency domain, is used both for measured and forecasted wave variance spectra.Most easily, it is defined in terms of the variance m 0 or standard deviation σ η of the surface elevation: [6] = =, where m 0, the zeroth-moment of the variance spectrum, is obtained by integration of the variance spectrum.