Search results
Results from the WOW.Com Content Network
Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and ...
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
A scatter plot, also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram, [2] is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded (color/shape/size), one additional variable can be displayed.
The company sold its first order, 10 copies of MATLAB, for $500 to the Massachusetts Institute of Technology (MIT) in February 1985. [8] A few years later, Little and the company moved to Massachusetts. [6] [9] There, Little hired Jeanne O'Keefe, an experienced computer executive, to help formalize the business. [3]
Waterfall plots are often used to show how two-dimensional phenomena change over time. [1] A three-dimensional spectral waterfall plot is a plot in which multiple curves of data, typically spectra, are displayed simultaneously. Typically the curves are staggered both across the screen and vertically, with "nearer" curves masking the ones behind.
A directed graph. A classic form of state diagram for a finite automaton (FA) is a directed graph with the following elements (Q, Σ, Z, δ, q 0, F): [2] [3]. Vertices Q: a finite set of states, normally represented by circles and labeled with unique designator symbols or words written inside them
Consider a graph G = (V, E), where V denotes the set of n vertices and E the set of edges. For a (k,v) balanced partition problem, the objective is to partition G into k components of at most size v · (n/k), while minimizing the capacity of the edges between separate components. [1]
A coloring of a given graph is distinguishing for that graph if and only if it is distinguishing for the complement graph. Therefore, every graph has the same distinguishing number as its complement. [2] For every graph G, the distinguishing number of G is at most proportional to the logarithm of the number of automorphisms of G.