Search results
Results from the WOW.Com Content Network
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. [1] It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. [2]
Kansa method has recently been extended to various ordinary and PDEs including the bi-phasic and triphasic mixture models of tissue engineering problems, [14] [15] 1D nonlinear Burger's equation [16] with shock wave, shallow water equations [17] for tide and current simulation, heat transfer problems, [18] free boundary problems, [19] and ...
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by Sergei Godunov in 1959, [1] for solving partial differential equations. One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In ...
The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with a numerical dissipation term of 1/2.
The MFS has proved particularly effective for certain classes of problems such as inverse, [10] unbounded domain, and free-boundary problems. [11] Some techniques have been developed to cure the fictitious boundary problem in the MFS, such as the boundary knot method, singular boundary method, and regularized meshless method.
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...