Search results
Results from the WOW.Com Content Network
Its primary function is to give the cell its shape and mechanical resistance to deformation, and through association with extracellular connective tissue and other cells it stabilizes entire tissues. [ 4 ] [ 5 ] The cytoskeleton can also contract, thereby deforming the cell and the cell's environment and allowing cells to migrate . [ 6 ]
The cell membrane surrounds the cytoplasm of living cells, physically separating the intracellular components from the extracellular environment. The cell membrane also plays a role in anchoring the cytoskeleton to provide shape to the cell, and in attaching to the extracellular matrix and other cells to hold them together to form tissues.
This membrane contains an enzyme called NAD(P)H dehydrogenase which transfers electrons in a linear chain to oxygen molecules. [1] This electron transport chain (ETC) within the chloroplast also interacts with those in the mitochondria where respiration takes place. [2] Photosynthesis is also a process that Chlororespiration interacts with. [2]
The movement of phospholipids, even those located in the outer leaflet of the membrane, is regulated by the actin-based membrane skeleton meshwork.Which is surprising, because the membrane skeleton is located on the cytoplasmic surface of the plasma membrane, and cannot directly interact with the phospholipids located in the outer leaflet of the plasma membrane.
Cytoplasmic streaming, also called protoplasmic streaming and cyclosis, is the flow of the cytoplasm inside the cell, driven by forces from the cytoskeleton. [1] It is likely that its function is, at least in part, to speed up the transport of molecules and organelles around the cell.
Desmin IFs are structural components of the sarcomeres in muscle cells and connect different cell organelles like the desmosomes with the cytoskeleton. [22] Glial fibrillary acidic protein (GFAP) is found in astrocytes and other glia. Peripherin found in peripheral neurons.
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane. Plants, algae, and cyanobacteria have one type of PRC for each of its two photosystems. Non-oxygenic bacteria, on the other hand, have an RC resembling either the Photosystem I centre (Type I) or the Photosystem II centre (Type II).