enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    The even numbers form an ideal in the ring of integers, [13] but the odd numbers do not—this is clear from the fact that the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to 0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 ...

  3. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    A doubly even number is an integer that is divisible more than once by 2; it is even and its quotient by 2 is also even. The separate consideration of oddly and evenly even numbers is useful in many parts of mathematics, especially in number theory, combinatorics , coding theory (see even codes ), among others.

  4. Even code - Wikipedia

    en.wikipedia.org/wiki/Even_code

    A binary code is called an even code if the Hamming weight of each of its codewords is even. An even code should have a generator polynomial that include (1+x) minimal polynomial as a product. Furthermore, a binary code is called doubly even if the Hamming weight of all its codewords is divisible by 4. An even code which is not doubly even is ...

  5. Even - Wikipedia

    en.wikipedia.org/wiki/Even

    even and odd functions, a function is even if f(−x) = f(x) for all x; even and odd permutations, a permutation of a finite set is even if it is composed of an even number of transpositions; Singly even number, an integer divisible by 2 but not divisible by 4; Even code, if the Hamming weight of all of a binary code's codewords is even

  6. Odd–even sort - Wikipedia

    en.wikipedia.org/wiki/Odd–even_sort

    The odd–even sort algorithm correctly sorts this data in passes. (A pass here is defined to be a full sequence of odd–even, or even–odd comparisons. The passes occur in order pass 1: odd–even, pass 2: even–odd, etc.) Proof: This proof is based loosely on one by Thomas Worsch. [6]

  7. Even–odd rule - Wikipedia

    en.wikipedia.org/wiki/Even–odd_rule

    The SVG defines the even–odd rule by saying: This rule determines the "insideness" of a point on the canvas by drawing a ray from that point to infinity in any direction and counting the number of path segments from the given shape that the ray crosses. If this number is odd, the point is inside; if even, the point is outside.

  8. Computer programming - Wikipedia

    en.wikipedia.org/wiki/Computer_programming

    Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. [1] [2] It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages.

  9. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    There are only three types of non-trapezoidal numbers: even perfect numbers, powers of two, and the numbers of the form (+) formed as the product of a Fermat prime + with a power of two in a similar way to the construction of even perfect numbers from Mersenne primes. [52]