Search results
Results from the WOW.Com Content Network
The system stiffness matrix K is square since the vectors R and r have the same size. In addition, it is symmetric because k m {\displaystyle \mathbf {k} ^{m}} is symmetric. Once the supports' constraints are accounted for in (2), the nodal displacements are found by solving the system of linear equations (2), symbolically:
For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices. For example, for piecewise linear elements, consider a triangle with vertices (x 1, y 1), (x 2, y 2), (x 3, y 3), and define the 2×3 matrix
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
A matrix polynomial identity is a matrix polynomial equation which holds for all matrices A in a specified matrix ring M n (R). Matrix polynomials are often demonstrated in undergraduate linear algebra classes due to their relevance in showcasing properties of linear transformations represented as matrices, most notably the Cayley–Hamilton ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
The dimension of an ideal I in a polynomial ring R is the Krull dimension of the ring R/I and is equal to the dimension of the algebraic set of the zeros of I. It is also equal to number of hyperplanes in general position which are needed to have an intersection with the algebraic set, which is a finite number of points.
Given two square complex matrices A and B, of size n and m, and a matrix C of size n by m, then one can ask when the following two square matrices of size n + m are similar to each other: [] and []. The answer is that these two matrices are similar exactly when there exists a matrix X such that AX − XB = C .
In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.