Search results
Results from the WOW.Com Content Network
The system stiffness matrix K is square since the vectors R and r have the same size. In addition, it is symmetric because k m {\displaystyle \mathbf {k} ^{m}} is symmetric. Once the supports' constraints are accounted for in (2), the nodal displacements are found by solving the system of linear equations (2), symbolically:
Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.
Given two square complex matrices A and B, of size n and m, and a matrix C of size n by m, then one can ask when the following two square matrices of size n + m are similar to each other: [] and []. The answer is that these two matrices are similar exactly when there exists a matrix X such that AX − XB = C .
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. [2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal.
For many standard choices of basis functions, i.e. piecewise linear basis functions on triangles, there are simple formulas for the element stiffness matrices. For example, for piecewise linear elements, consider a triangle with vertices (x 1, y 1), (x 2, y 2), (x 3, y 3), and define the 2×3 matrix
Decomposition: = where is a unitary matrix of size m-by-m, and is an upper triangular matrix of size m-by-n Uniqueness: In general it is not unique, but if A {\displaystyle A} is of full rank , then there exists a single R {\displaystyle R} that has all positive diagonal elements.