Search results
Results from the WOW.Com Content Network
A spatial database is a general-purpose database (usually a relational database) that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data. Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons.
A grid-based spatial index has the advantage that the structure of the index can be created first, and data added on an ongoing basis without requiring any change to the index structure; indeed, if a common grid is used by disparate data collecting and indexing activities, such indices can easily be merged from a variety of sources.
R-trees are tree data structures used for spatial access methods, i.e., for indexing multi-dimensional information such as geographical coordinates, rectangles or polygons. The R-tree was proposed by Antonin Guttman in 1984 [2] and has found significant use in both theoretical and applied contexts. [3]
A spatiotemporal database embodies spatial, temporal, and spatiotemporal database concepts, and captures spatial and temporal aspects of data and deals with: Geometry changing over time and/or Location of objects moving over invariant geometry (known variously as moving objects databases [ 1 ] or real-time locating systems ).
Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...
The origin of the geodatabase was in the mid-1990s during the emergence of the first spatial databases.One early approach to integrating relational databases and GIS was the use of server middleware, a third-party program that stores the spatial data in database tables in a custom format, and translates it dynamically into a logical model that can be understood by the client software.
The most important property of Geohash for humans is that it preserves spatial hierarchy in the code prefixes. For example, in the "1 Geohash digit grid" illustration of 32 rectangles, above, the spatial region of the code e (rectangle of greyish blue circle at position 4,3) is preserved with prefix e in the "2 digit grid" of 1024 rectangles ...
Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [2]