Search results
Results from the WOW.Com Content Network
Amide reduction is a reaction in organic synthesis where an amide is reduced to either an amine or an aldehyde functional group. [1] [2] Catalytic hydrogenation
Another common example is the reaction of a primary amine or secondary amine with a carboxylic acid or with a carboxylic acid derivative to form an amide. This reaction is widely used, especially in the synthesis of peptides. On the simple addition of an amine to a carboxylic acid, a salt of the organic acid and base is obtained.
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [ 1 ] Ketones , aldehydes , carboxylic acids , esters , amides , and acid halides - some of the most pervasive functional groups , -comprise carbonyl compounds.
Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride (see amide reduction). The Weinreb–Nahm ketone synthesis. The major advantage of this method over addition of organometallic reagents to more typical acyl compounds is that it avoids the common problem of over-addition.
Attack by water converts 6 to protonated imidic acid 7, which undergoes loss of proton to arrive at the imidic acid tautomer of the final amide. In an alternative mechanism, the migration occurs at 9, directly after protonation of intermediate 3, in a manner similar to the Baeyer–Villiger oxidation to give protonated amide 10. Loss of a ...
Hydrazine is used to convert the ester to an acylhydrazine, which is reacted with nitrous acid to give the acyl azide. Heating the azide in ethanol yields the ethyl carbamate via the Curtius rearrangement. Acid hydrolysis yields the amine from the carbamate and the carboxylic acid from the nitrile simultaneously, giving the product amino acid ...
Illustrative is the conversion of isobutylene to tert-butylamine using HCN and sulfuric acid followed by base neutralization. The weight of the salt byproduct is greater than the weight of the amine. [12] In the laboratory, the Ritter reaction suffers from the necessity of an extremely strong acid catalyst.
The archetypal Beckmann rearrangement [4] is the conversion of cyclohexanone to caprolactam via the oxime. Caprolactam is the feedstock in the production of Nylon 6. [5] The Beckmann solution consists of acetic acid, hydrochloric acid and acetic anhydride, and was widely used to catalyze the rearrangement