Search results
Results from the WOW.Com Content Network
In mathematics, differential refers to several related notions [1] derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. [2] The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology.
In mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity a 2 − b 2 = ( a + b ) ( a − b ) {\displaystyle a^{2}-b^{2}=(a+b)(a-b)}
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
An infinite difference is a further generalization, where the finite sum above is replaced by an infinite series. Another way of generalization is making coefficients μ k depend on point x: μ k = μ k (x), thus considering weighted finite difference. Also one may make the step h depend on point x: h = h(x).
Difference commonly refers to: Difference (philosophy) , the set of properties by which items are distinguished Difference (mathematics) , the result of a subtraction
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, ...
The discrete equivalent of differentiation is finite differences. The study of differential calculus is unified with the calculus of finite differences in time scale calculus. [54] The arithmetic derivative involves the function that is defined for the integers by the prime factorization. This is an analogy with the product rule. [55]