Search results
Results from the WOW.Com Content Network
Pages in category "Theorems in complex analysis" The following 110 pages are in this category, out of 110 total. This list may not reflect recent changes. A.
Augustin-Louis Cauchy, one of the founders of complex analysis. Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with complex numbers include Euler, Gauss, Riemann, Cauchy, Gösta Mittag-Leffler, Weierstrass, and many more in the 20th century.
Bloch's theorem (complex analysis) Blondel's theorem (electric power) Blum's speedup theorem (computational complexity theory) Bôcher's theorem (complex analysis) Bochner's tube theorem (complex analysis) Bogoliubov–Parasyuk theorem (quantum field theory) Bohr–Mollerup theorem (gamma function) Bohr–van Leeuwen theorem
In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844 [1]), states that every bounded entire function must be constant. That is, every holomorphic function f {\displaystyle f} for which there exists a positive number M {\displaystyle M} such that | f ( z ) | ≤ M ...
In mathematics, the Cauchy integral theorem (also known as the Cauchy–Goursat theorem) in complex analysis, named after Augustin-Louis Cauchy (and Édouard Goursat), is an important statement about line integrals for holomorphic functions in the complex plane.
In complex analysis, the open mapping theorem states that if is a domain of the complex plane and : is a non-constant holomorphic function, then is an open map (i.e. it sends open subsets of to open subsets of , and we have invariance of domain.).
Hurwitz's theorem is used in the proof of the Riemann mapping theorem, [2] and also has the following two corollaries as an immediate consequence: . Let G be a connected, open set and {f n} a sequence of holomorphic functions which converge uniformly on compact subsets of G to a holomorphic function f.
As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables z i. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations.