enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text. T5 models are usually pretrained on a massive dataset of text and code, after which they can perform the text-based tasks that are similar to their pretrained tasks.

  3. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.

  4. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]

  5. Lab notebook - Wikipedia

    en.wikipedia.org/wiki/Lab_notebook

    Lab notebook with the complete record of the experiments underlying a published paper. [1] Chemistry stencils that used to be used for drawing equipment in lab notebooks. A laboratory notebook ( colloq. lab notebook or lab book ) is a primary record of research .

  6. Scientific modelling - Wikipedia

    en.wikipedia.org/wiki/Scientific_modelling

    Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]

  9. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Essentially, the mean is the location of the PDF on the real number line, and the variance is a description of the scatter or dispersion or width of the PDF. To illustrate, Figure 1 shows the so-called Normal PDF , which will be assumed to be the distribution of the observed time periods in the pendulum experiment.