enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    A curious footnote to the history of the Central Limit Theorem is that a proof of a result similar to the 1922 Lindeberg CLT was the subject of Alan Turing's 1934 Fellowship Dissertation for King's College at the University of Cambridge. Only after submitting the work did Turing learn it had already been proved.

  3. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.

  4. Central limit theorem for directional statistics - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem_for...

    The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.

  5. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3

  6. Lindeberg's condition - Wikipedia

    en.wikipedia.org/wiki/Lindeberg's_condition

    This theorem can be used to disprove the central limit theorem holds for by using proof by contradiction. This procedure involves proving that Lindeberg's condition fails for X k {\displaystyle X_{k}} .

  7. Stable distribution - Wikipedia

    en.wikipedia.org/wiki/Stable_distribution

    The Generalized Central Limit Theorem (GCLT) was an effort of multiple mathematicians (Berstein, Lindeberg, Lévy, Feller, Kolmogorov, and others) over the period from 1920 to 1937. [ 14 ] The first published complete proof (in French) of the GCLT was in 1937 by Paul Lévy . [ 15 ]

  8. Large deviations theory - Wikipedia

    en.wikipedia.org/wiki/Large_deviations_theory

    The central limit theorem can provide more detailed information about the behavior of than the law of large numbers. For example, we can approximately find a tail probability of M N {\displaystyle M_{N}} – the probability that M N {\displaystyle M_{N}} is greater than some value x {\displaystyle x} – for a fixed value of N {\displaystyle N} .

  9. Lyapunov theorem - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_theorem

    Lyapunov theory, a theorem related to the stability of solutions of differential equations near a point of equilibrium; Lyapunov central limit theorem, variant of the central limit theorem; Lyapunov vector-measure theorem, theorem in measure theory that the range of any real-valued, non-atomic vector measure is compact and convex