enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:Ultrasound range diagram.svg - Wikipedia

    en.wikipedia.org/wiki/File:Ultrasound_range...

    Derivative of Heath Raftery's own creation. Rough diagram of sound frequency scale, showing ultrasound and some applications. Date: 28 June 2010, 23:30 (UTC) Source: Ultrasound_range_diagram.png; Ultrasound_range_diagram_png_(sk).svg; Author: Ultrasound_range_diagram.png: The original uploader was LightYear at English Wikipedia.

  3. Ultrasonic transducer - Wikipedia

    en.wikipedia.org/wiki/Ultrasonic_transducer

    Sound field of a non focusing 4 MHz ultrasonic transducer with a near field length of N = 67 mm in water. The plot shows the sound pressure at a logarithmic db-scale. Sound pressure field of the same ultrasonic transducer (4 MHz, N = 67 mm) with the transducer surface having a spherical curvature with the curvature radius R = 30 mm

  4. Ultrasound - Wikipedia

    en.wikipedia.org/wiki/Ultrasound

    Ultrasound is sound with frequencies greater than 20 kilohertz. [1] This frequency is the approximate upper audible limit of human hearing in healthy young adults. The physical principles of acoustic waves apply to any frequency range, including ultrasound.

  5. Ultrasonography of chronic venous insufficiency of the legs

    en.wikipedia.org/wiki/Ultrasonography_of_chronic...

    The reflected ultrasound is received by the probe, transformed into an electric impulse as voltage, and sent to the engine for signal processing and conversion to an image on the screen. The depth reached by the ultrasound beam is dependent on the frequency of the probe used. The higher the frequency, the lesser the depth reached. [9]

  6. Mechanical index - Wikipedia

    en.wikipedia.org/wiki/Mechanical_index

    Mechanical index (MI) is a unitless ultrasound metric. It is defined as [1] =, where P r is the peak rarefaction pressure of the ultrasound wave , derated by an attenuation factor to account for in-tissue acoustic attenuation; f c is the center frequency of the ultrasound pulse .

  7. Therapeutic ultrasound - Wikipedia

    en.wikipedia.org/wiki/Therapeutic_ultrasound

    The ultrasound within tissue consists of very high frequency sound waves, between 800,000 Hz and 20,000,000 Hz, which cannot be heard by humans. Some of the advantages of ultrasound as a diagnostic and therapeutic tool include its safety profile, lack of radiation, portability, and low cost. [4]

  8. Ultrasound energy - Wikipedia

    en.wikipedia.org/wiki/Ultrasound_energy

    Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.

  9. Phased array ultrasonics - Wikipedia

    en.wikipedia.org/wiki/Phased_array_ultrasonics

    By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...