Search results
Results from the WOW.Com Content Network
Postsynaptic potentials occur when the presynaptic neuron releases neurotransmitters into the synaptic cleft. These neurotransmitters bind to receptors on the postsynaptic terminal, which may be a neuron , or a muscle cell in the case of a neuromuscular junction . [ 1 ]
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
The inactivation of presynaptic Ca 2+ channels after repeated action potentials also contributes to STD. [8] Depression and facilitation interact to create short-term plastic changes within neurons, and this interaction is called the dual-process theory of plasticity. Basic models present these effects as additive, with the sum creating the net ...
Synaptic potentials, unlike action potentials, degrade quickly as they move away from the synapse. This is the case for both excitatory and inhibitory postsynaptic potentials. Synaptic potentials are not static. The concept of synaptic plasticity refers to the changes in synaptic potential. [6]
This can result from changes in presynaptic calcium as well as feedback onto presynaptic receptors, i.e. a form of autocrine signaling. Homosynaptic plasticity can affect the number and replenishment rate of vesicles or it can affect the relationship between calcium and vesicle release. Homosynaptic plasticity can also be postsynaptic in nature.
Both the presynaptic and postsynaptic sites contain extensive arrays of molecular machinery that link the two membranes together and carry out the signaling process. In many synapses, the presynaptic part is located on the terminals of axons and the postsynaptic part is located on a dendrite or soma .
[21] [36] [47] The hypothesis gets its name because normal synaptic transmission is directional and proceeds from the presynaptic to the postsynaptic cell. For induction to occur postsynaptically and be partially expressed presynaptically, a message must travel from the postsynaptic cell to the presynaptic cell in a retrograde (reverse
However, postsynaptic induction combined with presynaptic expression requires that, following induction, the postsynaptic cell must communicate with the presynaptic cell. Because normal synaptic transmission occurs in a presynaptic to postsynaptic direction, postsynaptic to presynaptic communication is considered a form of retrograde transmission.