Search results
Results from the WOW.Com Content Network
Transition metal carbon dioxide complexes undergo a variety of reactions. Metallacarboxylic acids protonate at oxygen and eventually convert to metal carbonyl complexes: [L n MCO 2] − + 2 H + → [L n MCO] + + H 2 O. This reaction is relevant to the potential catalytic conversion of CO 2 to fuels. [5]
If metal oxides are used carbon dioxide is formed as a reaction product. In the reduction of metal chlorides with carbon monoxide phosgene is formed, as in the preparation of osmium carbonyl chloride from the chloride salts. [38]
The term carbonyl can also refer to carbon monoxide as a ligand in an inorganic or organometallic complex (a metal carbonyl, e.g. nickel carbonyl). The remainder of this article concerns itself with the organic chemistry definition of carbonyl, such that carbon and oxygen share a double bond.
Dicobalt octacarbonyl is an organocobalt compound with composition Co 2 (CO) 8.This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry.
Insertion reactions are observed in organic, inorganic, and organometallic chemistry. In cases where a metal-ligand bond in a coordination complex is involved, these reactions are typically organometallic in nature and involve a bond between a transition metal and a carbon or hydrogen. [1]
A carbon–oxygen bond is a polar covalent bond between atoms of carbon and oxygen. [1] [2] [3]: 16–22 Carbon–oxygen bonds are found in many inorganic compounds such as carbon oxides and oxohalides, carbonates and metal carbonyls, [4] and in organic compounds such as alcohols, ethers, and carbonyl compounds.
A metallacarboxylic acid is a metal complex with the ligand CO 2 H. These compounds are intermediates in reactions that involve carbon monoxide and carbon dioxide, these species are intermediates in the water gas shift reaction. Metallacarboxylic acids are also called hydroxycarbonyls. [1]
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.